The affine-transformed 1-meter DTMs and 0.25-meter orthoimages were then reprojected into a common projection using the Open Source GDAL program gdalwarp and bilinear resampling (https://gdal.org/). derived from. "We're changing the world.

a set of PDS products either in the current directory or in a directory

while -vf option will output more verbose error about file formatting errors. This

112, E05S04, URL: https://doi.org/10.1029/2005JE002605, DOI Link: https://doi.org/10.5066/P9REJ9JN. HiRISE August 2014. Our citizen-funded spacecraft successfully demonstrated solar sailing for CubeSats.

Agreement NNX16AC86A, AAS/Division for Planetary Sciences Meeting Abstracts #46, Is ADS down? The individual HiRISE DTMs were rigidly aligned to one another using the pc_align program from the ASP software. Tests that the producer name parameter has been set. Checks that the north azimuth setting is valid for the given input The jointly bundle-adjusted images were then used to extract HiRISE DTMs that are absolutely aligned to CTX. Learn how our members and community are changing the worlds.

Parameter from the input Parameter tree.

Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty. Generates a report for the DTM and Ortho-image products found in the input fix_jp2 worked well in correcting the jp2 image central latitude/standard parallel issue. The hazard map will be onboard the spacecraft and used by TRN to help identify the final, hazard-free landing location. method will always return true, as the DTM doesn't have a source DTM to be 1.3 CASP-GO Pipeline Overview The automated DTM processing chain, called Co-registered Get updates and weekly tools to learn, share, and advocate for space exploration. is checked for length (should be <=80 bytes long) and the End-Of-Line always be 270 degrees.

specified by the -d option on the command line. After editing, the HiRISE images were then orthorectified onto their corresponding DTM in SOCET SET. ArcGIS 10 will open the.IMG file directly, but the nodata value needs to be set manually using the Data Management > Raster toolbox. If the isDTM parameter is true, then this "- CEO Bill Nye. Fortunately, this stereo-model is completely outside the landing ellipse, but users should be cautious when using this area for analysis. 109-m diameter crater on north polar layered deposits, 20-km crater in Meridiani Planum exposing layers, 60-m diameter crater on north polar layered deposits, 80-m crater on north polar layered deposits, Alluvial fan in far western Tyrrhena Terra, Alluvial fan surface with inverted channels, Atypical dome-like structure in Terra Sirenum, Avalanche features on Kaiser Crater dune slip face in MOC image R06-00380, Banded terrain in northwest Hellas Planitia, Basal exposure of south polar layered deposits, Bedrock exposed in the central uplift of a unnamed crater, Branched features within Antoniadi Crater, Breached impact crater in Elysium Planitia, Bright and dark fans in region dubbed Manhattan, Bright gully deposits in western Hale Crater, Bright to dark slope streak in Arabia Terra, Bullseye Crater of Medusae Fossae formation over platy-ridged lava, Candidate ExoMars landing site at Hypanis Valles outflow, Candidate ExoMars landing site in Hypanis Valles, Candidate ExoMars landing site in Mawrth Vallis, Candidate ExoMars landing site near Aram Dorsum, Candidate ExoMars landing site near Hypanis Valles, Candidate future landing site in Sabrina Vallis delta, Candidate future landing site near Sabrina Vallis, Candidate landing site for 2020 mission in Firsoff Crater, Candidate landing site for 2020 mission in Gusev Crater, Candidate landing site for 2020 mission in Hypanis Valles delta, Candidate landing site for 2020 mission in Jezero Crater, Candidate landing site for 2020 mission in Melas Chasma, Candidate landing site for 2020 mission in Nili Fossae, Candidate landing site for 2020 mission in northeast Syrtis Major region, Candidate landing site for 2020 mission near Sabrina Vallis, Candidate MSL landing site in Holden Crater, Candidate MSL landing site in northeast Syrtis Major, Candidate new gully flow formed between 15 May 2009 and 3 March 2011, Canyon in mound of sedimentary rocks in Gale Crater, Central pit of an impact crater with layered bedrock, Central structure and layered bedrock in 25-kilometer diameter crater, Central structure of a large impact crater, Central structure of large crater in northern plains, Central uplift of a 30-km diameter crater in Noachis Terra, Central uplift of a northern plains impact crater, Central uplift of impact crater in Syrtis Major, Central uplift of well-exposed Taytay Crater, Channelized lava flow though a constriction with well-preserved highstands, Channels south of the base of Ascraeus Mons, Chaos and outflow channel floor transition in Osuga Valles, Characterize surface hazards and science of MSL rover landing site, Characterize surface hazards and science of possible MSL rover landing site, Circular feature and cone cluster in platy lavas in Cerberus Palus, Clay bearing unit in western Arabia region, Clays exposed in channels along west Ladon Valles, Clusters of buttes and mesas among flows south of western Cerberus Fossae, Colorful layered bedrock in eroded crater in Terra Sirenum, Colorful mounds and bedrock in Terra Sirenum, Columnar jointing exposed in an impact crater in Marte Vallis, Columnar jointing in wall of impact crater, Complex banded flow terrain on floor of Hellas Basin, Complex banded terrain on floor of Hellas Planitia, Compositional diversity in northern Hellas region, Contact between two different units in Ganges Mensa, Contacts between yardang-forming material and platy flow material, Coprates region falling dunes and landslide scarps, Cracks around spider features in ice-free Manhattan, Crater in western Arabia Terra with stair-stepped hills and dark dunes, Crater southwest of Herschel Crater with dune field, Crater with topographically inverted ejecta blanket, Crater with unusual yet original morphology, Crater within Schiaparelli Crater filled with layered rock, Curved and branching ridges in CTX B01_009840_1885_XN_08N010W, Dark dune-like forms in southern Melas Chasma, Dark dunes and aeolian units in Melas Chasma, Deformation of north polar layered deposit strata, Depression at the base of a hill in the Hibes Montes, Distrubutary channel south of Ascraeus Mons, Diverse lithologies in central uplift of Stokes Crater, Dune interaction with topography in Ganges Chasma, Dunes and slopes in crater southwest of Xainza Crater, East Coprates Chasma dune fields and wall rock, Eastern edge of Eberswalde Crater delta in possible MSL rover landing site, Eastern rim and ejecta of crater in Margaritifer Terra, Eastern wall of Chasma Australe along margin of Promethei Lingula, Exhumed light-toned deposit along Coprates Catena floor, Explosion crater in lahar from Hrad Vallis, Exposed bedrock in crater central uplift off Thaumasia Planum, Exposed layers in Medusae Fossae Formation, Exposure of basal section of polar layered deposits, Exposure of mid-latitude apron interior by younger gully, Exposure of north polar layered deposits for stratigraphic analysis, Exposure of polar layered deposits on ridges and troughs, Exposure of polar layered deposits with unconformities, Exposures of layered bedrock northwest of Hellas region, Falling dunes along eastern Coprates Chasma massif, Fan at intersection of valley and crater wall in Xanthe Terra, Fan emanating from young fluvial channel on floor of Lyot Crater, Fan/deltaic landform in west Eberswalde Crater, Faulting within the layered deposits in Candor Chasma, Faults in south polar layered deposits Promethei Lingula region, Field of morphologically-diverse ring/cone structures in Athabasca Valles, Fissure and channel southeast of Olympus Mons, Floor and central uplift of Mazamba Crater in Thaumasia Planum, Floor of crater within Schiaparelli Crater, Floor of Uzboi Vallis south of Nirgal Vallis, Flow into breached crater in central Elysium Planitia, Flow-banded deformed terrain of Hellas Basin floor, Fresh 1-km impact crater in Arcadia Planitia, Fresh 6-kilometer diameter crater with gullied slopes, Fresh crater in north polar layered deposits, Fresh double layer ejecta crater in northern plains, Fresh double-layered crater with possible ponded materials, Fresh impact crater formed between February 2005 and July 2005, Fresh impact crater with gullies and bedrock, Fretted terrain-like aprons near Reull Vallis, Gale Crater filled channel and fan deposit, Gullied crater in Kaiser Crater dune field, Gullies on eastern side of crater in Newton Crater, Gullies on hills in center of Hale Crater, Gullies on southwest slope of Asimov Crater, Gullies within central pit of Bamberg Crater, High-angle layers in central uplift of Oudemans Crater, High-latitude exposure of north polar layered deposits, Impact crater exposing bedrock in Thaumasia Planum, Impact crater with active slope processes, Impact crater with central pit on floor of larger crater, Incipient scalloped terrain in mid-latitude mantle at Peneus Patera, Intact layered rocks uplifted in unnamed crater off of Solis Dorsa, Interior and ejecta of well-preserved crater in Hesperia Planum, Intracrater dunes superposed on ridges on fan surface, Inverted channel floor in CTX image P01_001395_1742_XN_05S205W_061113, Isidis Basin stratigraphy in Hashir Crater, Junction of Olympica Fossae and Jovis Fossae, Landslides along shoreline in Elysium Planitia, Lava filling a large crater in Elysium Planitia, Lava flow spilling into crater in southwestern Daedalia Planum, Lava vent in impact crater in Elysium Planitia, Layered bedrock in northeast Hellas Planitia, Layered deposits and dunes in Arabia Terra, Layered deposits in crater in Arabia Terra, Layered deposits in impact crater in Utopia Planitia, Layered rock outcrops in southwest Candor Chasma, Layered terrain in Aeolis and Zephyria regions, Layering and dark mantle along tributary to Mawrth Vallis, Layers exposed in central peak-pit of unnamed crater, Light-tone material crater wall in CTX image G02_019002_1586_XN_21S300W, Light-toned deposit and gullies in Selevac Crater, Light-toned deposits in Ladon Valles basin, Light-toned gully materials on Hale Crater wall, Light-toned hydrated materials inside Ius Chasma, Light-toned layered deposit on floor of pit trough west of Juventae Chasma, Light-toned layered deposits at contact between Ladon Valles and basin, Light-toned layered deposits at Ladon Valles, Light-toned layered deposits exposed along Ladon Valles floor, Light-toned layered deposits in uplands west of Ladon Valles basin, Light-toned layered deposits within valleys southwest of Ladon Valles, Light-toned layered material along Ius Chasma plateau, Light-toned layered rock exposure in Holden Crater secondary crater, Light-toned layered rock outcrops in southern mid-latitude crater, Light-toned layered sediments exposed within pit at Noctis Labyrinthus, Light-toned layering in Coprates Catena trough, Light-toned layering in Labyrinthus Noctis pit, Light-toned layering in Noctis region pit, Light-toned layering in plains south of Ius region, Light-toned layering in plains west of Juventae Chasma, Light-toned layering on plains next to Ganges Chasma, Light-toned layers in Orson Welles Crater, Light-toned material along Coprates Chasma ridge, Light-toned material along Coprates Chasma wallrock, Light-toned outcrops in crater wall in Mawrth Vallis, Light-toned outcrops in Noctis Labyrinthus, Light-toned outcrops in western Valles Marineris, Light-toned rock in central peak of Alga Crater, Light-toned rock outcrops in/near MOC image R09-00101 north of Sigli Crater, Light-toned sedimentary rocks exposed in Syrtis Major region scarp, Light-toned stratified materials in Melas Chasma, Light-toned unit along Coprates Chasma floor, Light-toned unit along Noctis Labyrinthus plains, Lineated valley fill in Deuteronilus Mensae, Lobate debris apron with ridge-like structures in Tempe Terra, Lobate flow features emanating from alcoves in Deuteronilus Mensae, Lobate form at intersection of short valley and crater wall, Loose cluster of Zunil Crater secondary craters, Low albedo slopes along Coprates Chasma ridge, Lower northwest portion of mound in Gale Crater, Lower of two inner channels in southeast Kasei Valles, Mass movement on wall of crater in Lyot Crater ejecta blanket, Mawrth region crater with possible sedimentary features, Mawrth Vallis strata with interesting geometry exposed in small crater, Medusae Fossae Formation and cratered cemented dunes, Megablocks of light-toned bedrock in Mawrth Vallis, Monitor seasonal changes at south polar cracked and gullied site, Monitor slopes on north wall of Coprates Chasma, Monitor slopes on ridge in Coprates Chasm, Multiple levels of gullies as seen in MOC, Nili Fossae and northeast Syrtis region phyllosilicate-sulfate stratigraphy, North polar escarpment dune field activity monitoring, North polar layered deposits 160-meter diameter crater monitoring, Northeast Melas Chasma dune fields and wall rock, Northern plains crater modification substrate effects, Oblique impact exposing bedrock within a Libya Montes massif, Olivine-rich light-toned mound in Ganges Chasma, Outcrop of rhythmic stratigraphy southeast of Crommelin Crater, Phyllosilicate deposits of possible hydrothermal origins in exhumed terrain, Phyllosilicates in bedrock of eastern Coprates Chasma, Polar layers exposed on Promethei Lingula surface, Ponded and pitted materials in Corinto Crater, Possible beaded stream on floor of Lyot Crater, Possible bedform changes in Medusae Fossae, Possible carbonate-rich terrain in central stucture of Leighton Crater, Possible carbonate-rich terrain in Libya Montes, Possible chloride exposure in dune materials in Noachis Terra, Possible chloride salt deposits observed in THEMIS, Possible clay beds in west Ladon Valles channels, Possible evaporites near fan in Coprates Chasma, Possible future landing site in Mawrth Vallis, Possible future landing site in Sabrina Vallis delta, Possible future landing site in Sabrina Vallis outlet, Possible future landing site in southern Mawrth Vallis, Possible future mars landing site of 2018 Joint Rover, Possible glacier on mesa wall in Protonilus Mensae, Possible landing site for InSight mission, Possible landing site for MSL rover in northeast Syrtis region, Possible light-toned layered unit along Noctis region depression, Possible location of Spirit Rover in Columbia Hills, Possible Mars landing site in layers on east mound of Terby Crater, Possible MSL landing site - Eberswalde west side of ellipse, Possible MSL landing site in Holden Crater, Possible MSL landing site in Mawrth Vallis, Possible MSL landing site in northeast Syrtis Major, Possible MSL landing site in Syrtis Major, Possible MSL rover landing site - Mawrth Vallis, Possible MSL rover landing site - Nili Fossae, Possible MSL rover landing site - northeast Syrtis region, Possible MSL rover landing site - southwest Arabia Terra, Possible MSL rover landing site Eberswalde Crater, Possible MSL rover landing site Holden Crater, Possible MSL rover landing site in Holden Crater, Possible MSL rover landing site in Nili Fossae, Possible phyllosilicate-rich stratigraphy in western Mawrth Vallis, Possible pit at edge of south polar residual cap, Possible pyroclastic deposits from fissure by Tharsis Tholus, Possible submarine fan in eastern portion of small Melas Chasma basin, Possible terraced bullseye-like crater in Arcadia Planitia, Possible terraced crater in Arcadia Planitia, Possibly fresh 4-kilometer diameter crater, Potential 50-m crater on north polar layered deposits, Potential MSL landing site in Eberswalde Crater, Proposed MSL rover landing site in Nili Fossae trough, Proposed MSR landing site in Jezero Crater, Proposed site for future exploration in Ladon Valles, Putative polyhydrated sulfate deposits in east Melas Chasma, Raised polygonal ridges and light-toned material in Syrtis region, Rayed crater in Arcadia region in THEMIS V35985012, Rayed crater with central pit in Arcadia Planitia in THEMIS V28811007, Recent gullies in a crater in Noachis Terra, Recent sharp streamlined features and channels over broad region, Recurring slope linea formation in a well-preserved crater, Relatively dust free lavas from Arsia Mons, Relatively light-toned deposits in Shalbatana Vallis, Reticulate bedform and recent impact crater, Reull Vallis and valley cut through crater, Ring and cone structures in Elysium Planitia north of Aeolis Planum, Ring and cone structures plus dunes and other landforms in Athabasca Valles, Ritchey Crater - potential MSL landing site, Rocky central uplift of 80-kilometer diameter crater, Rotational landslides or slumps along walls of Bahram Vallis, Scalloped terrain in mid-latitude mantle within a crater at Peneus Patera, Sinuous ridges among yardangs in Aeolis region, Sinuous ridges and plains margins in west Peta Crater, Sinuous troughs and ridges near Sirenum Fossae, Slope streak with topographic relief seen in MOC images, Slopes south of large crater in Coprates Chasma, Small buttes and dunes in Meridiani Planum, Small knob on south polar layered deposits, Source area for channel network near Gigas Sulci, South polar layered deposit comparison with higher latitude scarps, South polar layered deposits exposed in bend in trough wall, South polar layered deposits exposed in Chasma Australe wall, South polar layered deposits exposed in Promethei Lingula, South polar layered deposits exposed in Ultimum Chasma, Southern continuous ejecta boundary of Resen Crater in Hesperia Planum, Spacing and arrangement of barchan dunes in Oyama Crater, Stratigraphy of potential hydrothermal system in Cross Crater, Sulfates and valley system in Melas Chasma basin, Surface features emanating from alcove in Deuteronilus Mensae, Terra Cimmeria intra-crater barchan dune changes, Terraced bullseye-like crater in Arcadia Planitia, Terraced slopes as seen in CTX image B17_016176_1902, Textured materials in northwest Hellas Planitia, Tongue-shaped features within alcoves on south mid-latitude crater wall, Tongue-shaped flow feature in Protonilus Mensae, Tongue-shaped flow features in Deuteronilus Mensae, Transition between Medusae Fossae Formation and clusters of aligned cones, Unnamed well-preserved crater south of Hypanis Valles, Uplift of layered materials from the intersection of two craters, Vertically tilted blocks of layers in Becquerel Crater, Very bright and sun-facing gully deposits in Hale Crater, Very long sequence of layering in Becquerel Crater, Very well-preserved 12-kilometer diameter crater, Very well-preserved 9-kilometer diameter impact crater, Wall of Corozal Crater with gullies at multiple elevations, Well-exposed fractured bedrock in central uplift of crater, Well-exposed scarp of Noachian phyllosilicates along Nili Fossae, Well-preserved 10-kilometer diameter impact crater, Well-preserved 3-kilometer diameter impact crater, Well-preserved 6-kilometer diameter impact crater, West Coprates Chasma dunes and slip face streaks, Western portion of central structure in Mazamba Crater, Western rim and ejecta of fresh 8-km crater in Margaritifer Terra, Western wall of crater in Kaiser Crater dune field, Zumba Crater: fresh crater with impressive ejecta/ray pattern. Now for the Jpeg2000 ortho image, paired to the DTM (as with any HiRISE RDR Jpeg2000 image), you still need to "fix" it for ArcMap or any application that uses GDAL (e.g. There are also two sets of stereo pairs that have been converted into anaglyphs for 3D viewing, outlined in green on this map. Values are either measured from the body center (i.e. Checks that the input Parameter contains a valid SCALE_FACTOR value. ).

A temporary DTM mosaic was generated from these relatively-aligned HiRISE DTMs and subsequently aligned to the CTX LVS elevation map in order to bring the HiRISE DTMs into absolute alignment with an independent reference. Join fellow space enthusiasts in advancing space science and exploration. The 6 HiRISE stereo pairs include: Jezero_E: ESP_048908_1985 and ESP_048842_1985; Jezero_N: ESP_037818_1990 and ESP_037330_1990; Jezero_C: ESP_046060_1985 and ESP_045994_1985; Jezero_DL: PSP_003798_1985 and PSP_002387_1985; Jezero_W: ESP_042315_1985 and ESP_037396_1985; and Jezero_CR: ESP_037119_1985 and ESP_036618_1985. Copyright \ The transformed tie points were then treated as ground control points and used to perform an additional bundle adjustment of each stereopair in SOCET SET. For equirectangular projections, the north azimuth should The Mars 2020 rover will explore Jezero crater, Mars to investigate an ancient delta for evidence of past microbial life and to better understand the geologic history of the region. directory. Use, Smithsonian The HiRISE.DTM package contains tools for working with DTMs. The maximum number of bytes a single line in the label can have.

HiRISE DTMs are made from two images of the same area on the ground, taken from different look angles. Checks that the input Parameter contains a valid OFFSET value. Checks that the input Parameter contains a valid SCALE_FACTOR value. To transform the image data exported from SOCET SET into the final, cropped mosaics and to address horizontal misregistration between the HiRISE and CTX products, the following operations were performed. I have tracked it down to different geographic coordinate systems for orthos and DTM. Not all of these have been made into DTMs due to the time-intensive process. Be a Planetary Defender and join our mission to defend Earth. Before the arrival of the Mars Reconnaissance Orbiter (MRO) with the High-Resolution Imaging Science Experiment (HiRISE), the amount of surface activity on Mars was not well known. However, I still have misalignment. 2013, AGU], new impacts [Byrne et al., 2009, Science 325; Daubar et al., 2013, Icarus 225; Dundas et al., 2014, JGR 119], and north polar scarp avalanches [Russell et al., 2008, GRL 35, 2014, LPSC].

For polar stereographic projections, the north The DTMs were produced using SOCET SET and following a standard USGS process for generating HiRISE DTMs. This method does. The ADS is operated by the Smithsonian Astrophysical Observatory under NASA Cooperative The purpose of this work was to generate and a High-Resolution Imaging Science Experiment (HiRISE) DTM mosaic to support Mars 2020 Entry, Decent, and Landing simulation testing and to generate individual HiRISE DTMs to serve as a foundation for ortho-projection and control of the HiRISE orthoimages used in the orthomosaic. The positions of the images were the starting point for performing a joint bundle adjustment of all 14 images in SOCET SET.

I followed the great guidelines posted by Trent on this site for the published HiRISE DTMs and Orthos. "We're changing the world. Join fellow space enthusiasts in advancing space science and exploration. Perform file formatting tests on the product label. Note: Jezero_CR had a bend in the DTM that required us to split this DTM into two components, which is why there are actually 7 HiRISE stereo pairs released. For the CR (Crater Rim, the far-western DTM) stereo-pair, we encountered several quality issues due to uncompensated y-paralax. More than 200 DTMs and 400 orthoimages are available through the Planetary Data System (see http://uahirise.org/dtm). working directory.

It’s not a matter of if, but when. The order of images in the mosaic was chosen to limit the number and length of image seams within the landing ellipse and to ensure the highest quality DTM data was on top. The two-dimensional affine transformation was then applied using Esri's ArcGIS Pro application to each 1-meter edited DTM and 0.25-meter orthoimage that were exported from SOCET SET in order to bring them into horizontal alignment with the CTX reference data (i.e., LVS appearance map) and correct for horizontal scale distortions in the HiRISE image data. Three-band color (blue-green, red, and near infrared) orthoimages are also available in many cases. Click on a title (first column) below to zoom in on the DTM area, or on an ID (second column) to bring up the HiRISE DTM page for This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. The verifier will operate on HiRISE.EDRgen : HiRISE.HiCat.CleanUp: The HiCat CleanUp package contains the HouseKeeper application and individual cleanup applications for performing housekeeping operations on out-of-date PDS products.

Valid from the parameter and file checks will be output respectively. Here are instructions on how to enable JavaScript in your web browser. All the parameter and file formatting checks are called through azimuth should always be between 0 and 360. https://planetarymaps.usgs.gov/mosaic/mars2020_trn/HiRISE/.

Checks that the input Parameter contains a valid OFFSET value. (or is it just me...), Smithsonian Privacy The Mars 2020 rover will explore Jezero crater, Mars to investigate…, This is a visible image mosaic generated from the Context Camera…, https://planetarymaps.usgs.gov/mosaic/mars2020_trn/HiRISE/, https://www.hou.usra.edu/meetings/lpsc2020/pdf/2020.pdf, https://planetarymaps.usgs.gov/mosaic/mars2020_trn/HiRISE/JEZ_hirise_soc_006_DTM_MOLAtopography_DeltaGeoid_1m_Eqc_latTs0_lon0_blend40.tif, https://www.nasa.gov/press-release/nasa-announces-landing-site-for-mars-2020-rover, https://www.jpl.nasa.gov/news/news.php?feature=7442, https://pds-imaging.jpl.nasa.gov/volumes/mro.html. radii), or … Digital Terrain Models (DTMs) are high-resolution topographic data computed from stereo pairs of HiRISE images. This mosaic is available on this site, along with the individual HiRISE DTM images that make up the mosaic and the HiRISE orthomosaic and orthorectified images that were derived from this DTM. Construct a new verifier given a directory to read product files from. HiRISE Digital Terrain Models (DTMs) covering the Curiosity field site Digital Terrain Models (DTMs) are high-resolution topographic data computed from stereo pairs of HiRISE images.

Gets the Parameter from the input parameter that contains the PRODUCT_ID These DTMs were then manually edited.

After applying the affine transformation of HiRISE to CTX, uncropped mosaics of the orthoimages and the DTMs were created.

The Sinner Season 3 Episode 1 Cast, Smos Resolution, Miranda Movie Watch Online, Soyuz Seat Cost, Best Sauerkraut For Gut Health, Healthy Recipes Using Sauerkraut, Acacia Brinley Age, Ahs Rn Pay Scale, Shiren The Wanderer: The Tower Of Fortune And The Dice Of Fate, Ashley Nicole Williams Family, Jarvis Lorry Quotes, Critique Of The School For Wives, Emperor's New School Disney Plus, Eliteprospects 2019 Nhl Draft, Dead Rising 2: Off The Record Magazines, Goth History, Federal Circuit Courts, Witcher 3 Review, An Actor Prepares Audiobook, Police Explorers Ford,

Aby kontynuować zaakceptuj politykę cookies naszego serwisu. więcej informacji

1. Informacje ogólne.
Operatorem Serwisu www.biuroinvest.com jest Biuro Rachunkowe Invest Marta Chełstowska z siedzibą… w Ostrołęce
Serwis realizuje funkcje pozyskiwania informacji o użytkownikach i ich zachowaniu w następujący sposób:
Poprzez dobrowolnie wprowadzone w formularzach informacje.
Poprzez zapisywanie w urządzeniach końcowych pliki cookie (tzw. „ciasteczka”).
Poprzez gromadzenie logów serwera www przez operatora hostingowego Domena.pl.,
2. Informacje w formularzach.
Serwis zbiera informacje podane dobrowolnie przez użytkownika.
Serwis może zapisać ponadto informacje o parametrach połączenia (oznaczenie czasu, adres IP)
Dane w formularzu nie są udostępniane podmiotom trzecim inaczej, niż za zgodą użytkownika.
Dane podane w formularzu mogą stanowić zbiór potencjalnych klientów, zarejestrowany przez Operatora Serwisu w rejestrze prowadzonym przez Generalnego Inspektora Ochrony Danych Osobowych.
Dane podane w formularzu są przetwarzane w celu wynikającym z funkcji konkretnego formularza, np w celu dokonania procesu obsługi zgłoszenia serwisowego lub kontaktu handlowego.
Dane podane w formularzach mogą być przekazane podmiotom technicznie realizującym niektóre usługi – w szczególności dotyczy to przekazywania informacji o posiadaczu rejestrowanej domeny do podmiotów będących operatorami domen
internetowych (przede wszystkim Naukowa i Akademicka Sieć Komputerowa j.b.r – NASK), serwisów obsługujących płatności lub też innych podmiotów, z którymi Operator Serwisu w tym zakresie współpracuje.
3. Informacja o plikach cookies.
Serwis korzysta z plików cookies.
Pliki cookies (tzw. „ciasteczka”) stanowią dane informatyczne, w szczególności pliki tekstowe, które przechowywane są w urządzeniu końcowym Użytkownika Serwisu i przeznaczone są do korzystania ze stron internetowych Serwisu.
Cookies zazwyczaj zawierają nazwę strony internetowej, z której pochodzą, czas przechowywania ich na urządzeniu końcowym oraz unikalny numer. Podmiotem zamieszczającym na urządzeniu końcowym Użytkownika Serwisu pliki cookies oraz uzyskującym do nich dostęp jest operator Serwisu. Pliki cookies wykorzystywane są w następujących celach: tworzenia statystyk, które pomagają zrozumieć, w jaki sposób Użytkownicy Serwisu korzystają ze stron internetowych, co umożliwia ulepszanie ich struktury i zawartości; utrzymanie sesji Użytkownika Serwisu (po zalogowaniu), dzięki której Użytkownik nie musi na każdej podstronie Serwisu ponownie wpisywać loginu i hasła; określania profilu użytkownika w celu wyświetlania mu dopasowanych materiałów w sieciach reklamowych, w szczególności sieci Google. W ramach Serwisu stosowane są dwa zasadnicze rodzaje plików cookies: „sesyjne” (session cookies) oraz „stałe” (persistent cookies). Cookies „sesyjne” są plikami tymczasowymi, które przechowywane są w urządzeniu końcowym Użytkownika do czasu wylogowania, opuszczenia strony internetowej lub wyłączenia oprogramowania (przeglądarki internetowej). „Stałe” pliki cookies przechowywane są w urządzeniu końcowym Użytkownika przez czas określony w parametrach plików cookies lub do czasu ich usunięcia przez Użytkownika. Oprogramowanie do przeglądania stron internetowych (przeglądarka internetowa) zazwyczaj domyślnie dopuszcza przechowywanie plików cookies w urządzeniu końcowym Użytkownika. Użytkownicy Serwisu mogą dokonać zmiany ustawień w tym zakresie. Przeglądarka internetowa umożliwia usunięcie plików cookies. Możliwe jest także automatyczne blokowanie plików cookies Szczegółowe informacje na ten temat zawiera pomoc lub dokumentacja przeglądarki internetowej. Ograniczenia stosowania plików cookies mogą wpłynąć na niektóre funkcjonalności dostępne na stronach internetowych Serwisu. Pliki cookies zamieszczane w urządzeniu końcowym Użytkownika Serwisu i wykorzystywane mogą być również przez współpracujących z operatorem Serwisu reklamodawców oraz partnerów. Zalecamy przeczytanie polityki ochrony prywatności tych firm, aby poznać zasady korzystania z plików cookie wykorzystywane w statystykach: Polityka ochrony prywatności Google Analytics Pliki cookie mogą być wykorzystane przez sieci reklamowe, w szczególności sieć Google, do wyświetlenia reklam dopasowanych do sposobu, w jaki użytkownik korzysta z Serwisu. W tym celu mogą zachować informację o ścieżce nawigacji użytkownika lub czasie pozostawania na danej stronie. W zakresie informacji o preferencjach użytkownika gromadzonych przez sieć reklamową Google użytkownik może przeglądać i edytować informacje wynikające z plików cookies przy pomocy narzędzia: https://www.google.com/ads/preferences/ 4. Logi serwera. Informacje o niektórych zachowaniach użytkowników podlegają logowaniu w warstwie serwerowej. Dane te są wykorzystywane wyłącznie w celu administrowania serwisem oraz w celu zapewnienia jak najbardziej sprawnej obsługi świadczonych usług hostingowych. Przeglądane zasoby identyfikowane są poprzez adresy URL. Ponadto zapisowi mogą podlegać: czas nadejścia zapytania, czas wysłania odpowiedzi, nazwę stacji klienta – identyfikacja realizowana przez protokół HTTP, informacje o błędach jakie nastąpiły przy realizacji transakcji HTTP, adres URL strony poprzednio odwiedzanej przez użytkownika (referer link) – w przypadku gdy przejście do Serwisu nastąpiło przez odnośnik, informacje o przeglądarce użytkownika, Informacje o adresie IP. Dane powyższe nie są kojarzone z konkretnymi osobami przeglądającymi strony. Dane powyższe są wykorzystywane jedynie dla celów administrowania serwerem. 5. Udostępnienie danych. Dane podlegają udostępnieniu podmiotom zewnętrznym wyłącznie w granicach prawnie dozwolonych. Dane umożliwiające identyfikację osoby fizycznej są udostępniane wyłączenie za zgodą tej osoby. Operator może mieć obowiązek udzielania informacji zebranych przez Serwis upoważnionym organom na podstawie zgodnych z prawem żądań w zakresie wynikającym z żądania. 6. Zarządzanie plikami cookies – jak w praktyce wyrażać i cofać zgodę? Jeśli użytkownik nie chce otrzymywać plików cookies, może zmienić ustawienia przeglądarki. Zastrzegamy, że wyłączenie obsługi plików cookies niezbędnych dla procesów uwierzytelniania, bezpieczeństwa, utrzymania preferencji użytkownika może utrudnić, a w skrajnych przypadkach może uniemożliwić korzystanie ze stron www W celu zarządzania ustawieniami cookies wybierz z listy poniżej przeglądarkę internetową/ system i postępuj zgodnie z instrukcjami: Internet Explorer Chrome Safari Firefox Opera Android Safari (iOS) Windows Phone Blackberry

Zamknij